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Concrete Hilbert Spaces for Quantum Systems with 
Infinitely Many Degrees of Freedom 

Laurens Weiss t and Gerhard Gerlich 2 

Received November I, 1995 

We demonstrate a method to describe quantum systems with infinitely many 
degrees of freedom in concrete Hilbert spaces, using the electromagnetic radiation 
field as a well-known example of such a system. Since our method is not only 
applicable to the case of countably many but even to the case of uncountably 
many degrees of freedom, there is no need for a finite quantization volume in 
radiation theory. 

1. INTRODUCTION 

The quantum theory of radiation was developed by Dirac (1926, 1927b) 
using the transformation theory as a mathematical basis (Dirac, 1927a). A 
description by means of a theory of separable Hilbert spaces was worked 
out by von Neumann (1932/1981, pp. 135 ft.). In this paper we use von 
Neumann's mathematical concept generalized in the following way (see, 
e.g., Gerlich, 1977, 1987, 1992): Instead of the Lebesgue measure, we use 
probability measures and corresponding integration spaces in order to build 
infinite-dimensional products. To represent uncountably many degrees of 
freedom, we disBense with the separability of Hilbert spaces in quantum 
theory. 

2. THE CONVENTIONAL CONCEPT TO QUANTIZE THE 
RADIATION FIELD 

As a solution of the Maxwell equations in source-free space the electric 
and magnetic fields are derived from the potentials A and �9 via the relations 
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E = - g r a d  �9 - O/Ot A and B = rot A. The radiation gauge div A = ~ = 
0 leads to a homogeneous wave equation for the vector potential 

1 02 
AA - c- 5 O---~ A = 0 (1) 

Assuming that the discussed field is confined with a spatial volume of finite 
size L 3, we can expand A in a Fourier series 

oe 

A(r, t) = ~] qk(t)Xk(r) (2) 
k = l  

with an appropriate set of vector mode functions Ak(r ). Each Fourier ampli- 
tude qk obeys the dynamical law of a harmonic oscillator of unit mass and 
frequency tok, 

qk = --(a2qk (3) 

The field's energy 

1 L % (E2(r, t) + c2B2(r, t)) d r  
3 

o~ 

l ~ ( p ~ +  22 
= - to~q~), Pk := qk (4) 

2 k=l 

is formally identical with the Hamilton function of a set of independent 
harmonic oscillators with unit mass, generalized coordinates qt, q2 . . . . .  and 
frequencies to~, to2 . . . . .  With the classical mechanical interpretation one can 
pass to quantum mechanics: Each oscillator qk is described by a Hamiltonian 

h 2 ?_5 ,03 
Hk -- 2 0q 2 + -2-q2 (5) 

which is defined on an appropriate subset of the integration space L2(pLL, R). 
Here R denotes the field of real numbers, ~L the Lebesgue measure. The 
eigenfunctions ~ k '  Mk E No, of H~ form a complete orthonormal set in 
L2(I.LL, R), where No denotes the set of  natural numbers including 0. Hence 
the eigenfunctions ~t~ "'" ~ t ,  of the n-particle Hamiltonian E~,= i Ilk are a 
complete orthonormal set in LZ(| • which is the corresponding n- 
particle Hilbert space. 

Since no infinite-dimensional Lebesgue measure exists, the limit n 
oo cannot be performed in the case of a representation with Lebesgue measure 
integration spaces (see, e.g., Gross, 1964, p. 52, or Skorohod, 1974, p. 102). 
Besides, the values I-I ~?Mk(qk) of the infinite products of energy eigenfunctions 
would not be finite in general. Instead of representing the whole system of 
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oscillators in an appropriate "natural" state space of amplitudes q~, q2 . . . . .  
one usually transforms to the space of occupation numbers M~, M2 . . . . .  
Mathematically, the latter is represented by the classical Hilbert space 12 of 
sequences, which can be read as a space of complex functions in the measure- 
theoretic sense. Defined on No, these functions are square integrable with 
respect to the counting measure. Here the limit n --> oo can be performed 
without any problem (see, e.g., von Neumann, 1932/1981, p. 143). In the 
sequel we are going to construct a state space of amplitudes for the complete 
system of oscillators. This can be done by substituting probability measures 
for the Lebesgue measure in the state spaces L~(p~,, R) of each oscillator. 

3. HARMONIC OSCILLATORS IN PROBABILITY MEASURE 
INTEGRATION SPACES 

To secure the convergence of infinite products, it is sufficient to have 
at most a finite number of factors different from one. The number of oscillators 
which are in an excited state that differs from the ground state ~0 is always 
finite. Therefore we are looking for a class of unitary transformations U k* 
that transform the spaces L~(I-%, R) into appropriate new spaces L2(wk, R), 
where the relation 

~bko := uk*d,~------ 1 (6) 

must hold. To find an explicit form for the U k*, we consider the eigenfunctions 
of the kth oscillator 

1 (cok~ TM ~k 
'kM,(qk) _ (2MkM'?)I/2\-~/ e x p ( _ . ~  q2) HMki( ~)/I ,I/2 Ok) (7) 

where 

dg~ HMk(Xk) = ( -  l)gke "d ~ (e -x~) (8) 

are the Hermite polynomials. The corresponding ground state is 

(COk~ TM OJ k 
t~(q,) = ~--~] e x p ( - ~  qQ (9) 

Thus we define 
k k U dpMklq~ [Pk(qk)] l/2qbk~(qk) = ~Mk(qk) 

Pk(qk) = L\ rh) exp -~-~ q~ 

(10) 

(11) 
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1 / /  ,,1/2 / 
*kMk(qk) -- (2MkMk!)l/2 HMki(~) Ok/ (12) 

The functions {qb~klM k �9 No} are a complete orthonormal set in LZ(wx, R). 
Since p~: R --4 R is a nonnegative Lebesgue measurable function, the 

relation Wk := P~P.L defines a new measure on the it-algebra ~gc of Lebesgue 
measurable subsets of R (see, e.g., Rudin, 1966/1987, p. 23). For arbitrary 
sets A C ~/. we have 

wk(A) = IA Wk(dqk) = fa p~(qk) lxt(dqk) (13) 

The transformation U k* changes the measure space (R, ~z., i-~t)k into 
(R, ~L, wk). Here w~ is a probability measure 

wk(R) = wk(dqk) = \'rrh] exp ---~ q~ p,L(dq,) = 1 (14) 

The latter property allows the construction of an infinite-dimensional product 
measure and thus of an appropriate state space of amplitudes for the whole 
number of harmonic oscillators. 

Given the maps U k explicitly, one can calculate the transformed operators 
�9 4k from the original ones Ak, 

U k* 
L~(#t.,  R )  

Ak 

L~(z~,R) 
U k• 

. L2(wk, R )  

I U k* 

�9 L2(wk, R )  

o Ak o U k =: Ak 

We get 

q"~ = qk, Pk = i~0kqk + p~ 

the amplitude operators 

= \2to,/ ~ k '  a*+ = ~---h-) q* \2to,/  aq-'-~ 

and, neglecting the zero-point energy, the new Hamiltonian 

(15) 

(16) 
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Ilk = h t o ~  + ak = htokqk 
O h 2 0 2 

Oqk 2 0 q ~  
(17) 

The given transformed operators ,4k are defined on the linear span of the 
complete orthonormal set {dp~klM k E No}, which clearly is a dense subset 
of L2(wk, R). The commutation relations remain unchanged, because the maps 
U k are unitary, i.e., linear with domain L~.(I~L, R). For the same reasons 
Hermitian operators in L~(~L, R) transform to Hermitian operators in L2(wk, 
R). As we are going to prove in the next section, the operators 

q-k, p~, and Hk are even self-adjoint. 

4. INFINITELY MANY OSCILLATORS IN A STATE SPACE OF 
AMPLITUDES 

With the new measure spaces (R, ML, Wk) of all amplitudes qk one can 
construct the product measure space (• | | = t~kEN(R, 
�9 ~L, W~) (see, e.g., Bauer, 1968/1974). The or-algebra | is generated 
by the cylinder sets with measurable basis which are subsets of • i.e., 
by the class of subsets • of the Cartesian product • Ak e ,-~/L, 
where only a finite number of sets A~ differ from R. The corresponding 
Hiibert space of square-integrable functions L2(| • =: L2(w) is 
an appropriate amplitude state space for the entire set of oscillators. Each 

9 operator on L-(w~, R) can be interpreted as an operator on L2(w). Hence, 
~,k== ~ Ilk is the Hamiltonian of the entire system. In consideration of the finite 
energy of the entire system, Ek~l Mk < ~, the finite products l'Ik~N ~ k  of 
energy eigenfunctions converge, because only a finite number of factors, say 
p, is not equal to one; we have 

X if, 17 = X M, ho, k l-I 
k = l  i E N  k = l  i e N  

P 

= ~, htoq, M t p d ~ t . . . d p ~ t  d p ~ N (18) 
I = l  

The linear span of the complete orthonormal set of energy eigenfunctions is 
dense in L2(w) and part of the domain of all interesting operators. The 
Hermitian character of the multiplication operator ~ is evident, whereas the 
examination of Pk and H~ is less trivial. In the finite-dimensional case we 
made use of the fact that the maps U ~ are unitary. In the infinite-dimensional 
case there is no Lebesgue-measure state space corresponding to L2(w). There- 
fore we have to look for another way of reasoning. Instead, we now make 
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f 
ai<-qi<--bi 

use of properties of  the product m e a s u r e  ~ k E N W k  and of their consequences 
for integration, which were studied in detail by Gerlich and Wulbrand (1978). 

For continuously differentiable functions Pi(qi) --/= 0 we have 

1 0 
aqkf( . . . .  qk . . . .  ) i~N ~ wi(dqi) 

Pk(qk) 

( 
= l f (  . . . .  bt, . . . .  ) | wi(dqi) 

.I iEN 
ai<qi<bi i #k 

id:k 

- ~ f(  . . . .  ak . . . .  ) | wi(dqi) (19) 
J i e N  

ai<qi<b~ i:kk 
i~:k 

For functions qJ, dO ~ LZ(w) that are partially differentiable with respect 
to qk with derivative in L2(w), we obtain 

I OO(q_...__~) dO(q) w(dq) 
Oq~ 

_ ~ 1 0 (Pk(q~)-~(q)dO(q)) w(dq) 
J P~(qk) Oqk 

- I -~(q) 1 a Pk(qk) aqk (Pk(qk)dO(q)) w(dq) (20) 

where we used the abbreviations ( . . . .  qk . . . .  ) =:  q and | wi =: w. After 
integration by parts the first integral on the right side vanishes in the case 
of  the Gaussian density (11). Finally, we find the formula 

[ ] fO*(q.._....___~))dO(q)w(dq)=f-(j(q)-0dO(q) + 2 tOk Oqk Oqk ~ q~,dO(q) w(dq) (21) 

which helps us to prove that ~ and Hk are Hermitian operators when defined 
on LZ(w). 

In order to prove that ~ is self-adjoint, we show that the domain of  

q"~ is part of  the domain of  q"~, i.e., D(q'~) C D(~) .  Choose an arbitrary element 

dO of D(q'~). We then have dO* = q'~dO ~ L2(w) and for all • ~ D ( ~ )  

f qk• f • 

r I x(q)[qkdO(q) -- ~b*(q)] w(dq) 0 (22) 
J 

Now choose 
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x(q) = (qok~(q) - dp*(q ) 
for qk �9 (ak, bk) C R, (ak, bk).arbitrary 
for q~ ~ (ak, b~) 

(23) 
Then X �9 D ( ~ )  and 

f R f i ' k l q k ~ b ( q ) - - d p * ( q ) 1 2 w ( d q ) = O  (24) 
N-Ik l  k 

It follows that q~b = dp* almost everywhere on R N-{k) • (ak, bk). Since (at., 
b~) was chosen arbitrary, the latter relation even holds on R N. Using ~b* �9 

L2(w), we get ~b �9 D ( ~ )  and $'~b = qkdp = ~ b ;  thus the proof is complete. 
We now show that the momentum operator ~ = - i h  O/Oqk + itoeq~, 

defined on 

D ( ~ )  = {dO �9 L2(w)l~b �9 Q ,  i.e., dO continuously 
partially differentiable with respect (25) 
to qk; a/aqk~ and qk~b �9 L2(w)} 

is essentially self-adjoint. Since Pk is Hermitian, it is sufficient to show that 
(Pk --+ i l ) ( D ( ~ ) )  is dense in L2(w) (see, e.g., Hellwig, 1964, pp. 153 ft.). To 
do this we consider the set 

X = {~ �9 L2(w) IO �9 C~, ~--= 0 for those q~ 
which are not an element of  (26) 
a given individual interval [a~, bk] C R} 

which is dense in L2(w). For each arbitrary chosen function ~ �9 X there 
exists a function ~b �9 D ( ~ )  that obeys the relation (Pk + il)d~ = ~, i.e., 
(Pk + i l ) (D(~ ) )  D X. Rescaling the qk axis, we obtain the differential equation 

/ \ 

( - - i g ~ - - + i h ~ o k q k + i ) d p l ( . . . , q k , . . . ) = t ~ ( q k )  . . . .  . . . .  (27) 
\ 

with 

dp( . . . .  qk . . . .  ) 

= - i e x p  qk+ T q ~ J  

x ~( . . . .  & . . . .  ) exp - &  ~-- ~ wk(d&) (28) 
k 

being a possible solution. Since ~ vanishes for all qk not in [ak, b~], so does 
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4). Hence the chosen qb is an element of L2(w). With (Pk + il)tb = ~ 
LE(w) we have pkqb e L2(w). Summarizing, we can state X C ( ~  + 

i l ) (D(~)) ,  which means ( ~  + i l ) (D(~) )  is dense in L2(w). In the same way 

we can prove that (Pk -- i l ) (D(~) )  is dense in L2(w). The closures of the 

essentially self-adjoint operators p"~ are uniquely defined and self-adjoint. 
Until now none of our considerations has identified the system of infi- 

nitely many harmonic oscillators as a quantized radiation field. Specifying 
the interaction operator with another quantum system, for example, an atomic 
system with state space L 2 atom, we have that the system of oscillators becomes 
a quantized radiation field. The above representation allows us to describe 
the interaction in the state space L2(w) | La2,om of the entire system in complete 
agreement with conventional considerations (see, e.g., von Neumann, 1932/ 
1981, pp. 135ff.). In particular, we get the same probabilities for transitions 
between two different atomic energy eigenstates. 

5. T H E  CONTINUUM OF MODES 

Without the artificial boundary condition that the field is confined within 
a spatial volume of finite size we have to take a continuum of modes into 
account and thus a continuum of dynamical variables. As we will see in the 
sequel, the transition from countably infinitely to uncountably infinitely many 
coordinates is much less difficult than the transition from a finite to an infinite 
number, because the results of the discrete case can be transformed to the 
continuous one without any problem. Substituting R for the set of indices N 
when constructing the measure and Hilbert space, we obtain the state space 
L2(| wi, X/~R R) of uncountably many amplitudes {qi -- q( i ) l i  ~ R}. 
As this space is not separable, there is no (Hilbert space) isomorphism of 
L2(~)iER Wi, X/E R R) onto/2. For the new Hamiltonian we choose the enumera- 

ble sum of Hamiltonians of the one-particle Hilbert spaces Ei~ R Hi [a definition 
of enumerable infinite sums and products was given by yon Neumann (1938)]. 
Its eigenfunctions form a complete normalized orthogonal set {IIi~R ~ i l M i  

No, Ei~R Mi < oo} in L2(| wi, Xi~R R). Notice that this Hamiltonian 
as an enumerable sum is not analogous to the energy of the entire system of 
uncountably many classical oscillators according to (4), which is 

1 f (~2 + to~q.2) I~L(di) (29) 
2 ) 

Since equations (19)-(2 l) still hold in the enumerable case, all steps consider- 
ing the Hermitian, respectively the self-adjoint, nature of certain operators 
can be transformed. Likewise the convergence of infinite sums and products 
can be transferred. 
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6. THE G E N E R A L  C O N C E P T  AND O T H E R  APPLICATIONS 

The above-described method of representing quantum systems with an 
infinite number of degrees of freedom in concrete Hilbert spaces can be used 
as a universal concept in all those cases where the following conditions hold: 
The one-particle states O k e L~(I~L, X) can be written as products of nonnega- 
tive, Lebesgue measurable functions V/-~k and functions qb k ~ L2(Wk, X), the 
measures Wk :=  p~I~L are probability measures, and the new ground states 
~b k equal unity. The density Pk then is given by 

Besides the one-dimensional harmonic oscillator, there are other simple 
but important quantum systems of this kind: Neglecting the movement of its 
center of mass, the normalized eigenfunctions of the hydrogen atom in relative 
coordinates are products of radial wave functions R,,t and the spherical har- 
monics Yr,, (see, e.g., Hittmair, 1972, pp. 88ff.) 

~.t,.(r, O, q~) = R.t(r)Yt,.(O, tp) 

where n = 1, 2 . . . . .  l = 0, 1 . . . . .  n, m = - l  . . . . .  I. Corresponding 
eigenvalues are the discrete energies 

h 2 1 
2ma 2 n 2 

E ~ m 

a being the Bohr radius. If we set 

and 

p(r, 0, q~)= (4a-3e-2rm)(4~)=pR(r)pr(O,  q)) 

1 ] ma 
O, = p(r, O, O, 

w = p(r, O, ~)r z sin 0 dr dO &p is a probabi l i ty  measure on (-~L, [0, ~ ]  x 
[0, "rr] X [0, 2"rr]) 

~ fo 
4 r2e_2rladr l l 2~ w(R) = ~ ~ sin 0 dO ~ dqo = l 

The ~bnt,, are elements of L2(w, [0, oo] • [0, ~] • [0, 2"rr]). Notice that the 
radial wave functions R,l as well as the spherical harmonics Yt,n possess 
"natural densities" pR, resp. O r of probability measures w R, resp. w r, with 
respect to the Lebesgue measure, i.e., w = w R | w v. 
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In the case of a one-dimensional infinite square-well potential (see, e.g., 
Hittmair, 1972, pp. 49ff.) 

V(x) = {0 
V0 ---) +oo 

for - a  --< x --< a 
for x < - a ,  resp. x > a 

the bound solutions of the stationary Schr6dinger equation in the state space 
L2(I~L, R) are 

*n(x) = t/2 (n + l)'rrx / 
cos .1 for 

for !1)( for 
1/2 

0,(x) = sin (n + l)'rrx] \ 2a  ] for 

for 

with corresponding energy eigenvalues 
ffl'2~ 2 

E,, - 8ma2 (n + 1) 2, 

Setting 

and 

qbn(x ) = 

= -- COS p(x) a 

.% 

X ~ - - a  / 

- a  < x < a l ,  

x ~> - - a  

x --- - a  q 

- a  < x < a l ,  

x >-- - a  

n = 0 , 2 , 4  . . . .  

n =  1 , 3 , 5  . . . .  

neNo 

e0 for x --< - a  

cos~--~-a ) + sln~,--~-a ) t a n  ~a  

for - a  < x < a  

0 for x > - - - a  

,, n = 0 , 2 , 4  . . . . .  
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"0 for x --< - a  

dOn(x) = s l n ~ - ~ a  ) + c o s ~ - ~ a  ) tan ~ a  

for - a  < x < a 

0 for  x >-- - a  

we get the probabi l i ty  measure  w = pilL, 

w s, If [ - cos  dx = 1 
a a 

which is def ined on the measurab le  space (s~c, R). 

n =  1 , 3 , 5  . . . .  
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